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1 Executive Summary

This report addresses Gerard’s concern regarding dairy sales exceeding production costs for his
dairy farm. Gerard is investigating hedging his prices with a put option. Since the dairy product
Gerard sells isn’t available on the Chicago Mercantile Exchange (CME), Gerard needs a reliable
model linking his product with products on the exchange. This will help him determine at what
strike price and for which milk category he should buy put options. The di↵erent milk categories
Gerard can obtain put options for are Class.III, Class.IV, Butter, and Non-Fat Dry Milk.

Our team found that CME Class.III milk product prices have the clearest linear relationship with
Gerard’s product. Specifically, log(Class.III) milk prices align the best with Gerard’s ”Mailbox”
prices. From this relationship, we can recommend with some confidence which product and at
which strike price Gerard should buy a put option on. By following our recommendations, Gerard
will be able establish a floor for his milk prices and minimize his losses. Specifically, given a desired
Mailbox price floor of $12.50, Gerard should purchase put options for Class.III milk products at
the strike price nearest to $13.93.

2 Introduction

2.1 Background and Problem Statement

Dairy farmers Gerard and John want to use put options on dairy products to hedge the price of
their products in six months. By doing this they can be confident the price they sell it for won’t
be less than their production costs. However, the options available on the Chicago Mercantile
Exchange (CME) are for slightly di↵erent kinds of dairy products than what Gerard and John are
selling. They need to buy put options on the product that most closely resembles their product’s
(”mailbox”) price.

If the put option underlying the asset and the asset being hedged are the same, choosing a strike
price is fairly straightforward. For example, if the Gerard and John could buy put options directly
on the mailbox price and wanted to ensure a payout above $12.50 to o↵set production costs, they
would choose a strike price of $12.50 and their payout would look like the graph on the right below
in Figure 1 (assuming $12.00 production costs but ignoring premium and trading costs). For a con-
ceptual understanding, the graph on the left represents the payo↵ for a CME trader who doesn’t
actually obtain the asset until the put option expires. The graph on the right is essentially the sum
of the trader’s graph and the graph of what Gerard and John would receive without a put option
(mailbox price less production costs):
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Figure 1: Illustration of Put Option Payouts.

The goal of this study is to determine which exchange product and put option strike price best
approximates the graph to the right in Figure 1.

2.2 Data Description

Historical Price Data:
We have 41 rows of data, one for each of the last 41 months. Each row contains fields for date,
Gerard and John’s mailbox price (per cwt), Class.III milk price (per cwt), Class.IV milk price,
butter (per pound), and nonfat dry milk price (per pound). There aren’t any obvious errors or
missing data.

Gerard and John’s mailbox price is closely linked to the California dairy market prices. The Class
III milk, Class IV milk, butter, and nonfat dry milk prices (NFDM) are closely linked to the dairy
market for the rest of the United States. The mail box price and the other four categories are
regulated di↵erently so they fluctuate di↵erently over time. CME only sells put options for the
Class III milk, Class IV milk, butter, and NFDM prices of the non California market.

Future production costs of below $12.00 as estimated by the farmer (expert opinion) are assumed
throughout the analysis.

CME Put Options/Futures Data:
The put option premium at time 0 and available strike prices for time t are linked to the futures
contract price for time t. The five available milk put option strike prices (per cwt) for futures price F

t

are F
t

�$0.50;F
t

�$0.25;F
t

;F
t

+$0.25;F
t

+$0.50. The five available butter and nonfat dairy milk put
option strike prices (per pound) for futures price F

t

are F
t

�$0.04;F
t

�$0.02;F
t

;F
t

+$0.02;F
t

+$0.04.
The futures contract price at time t which is set now is related to the current market price of the
underlying commodity and the price expectations of futures buyers.

The current six month futures prices, available put option strike prices and premiums are unknown.
This could limit the usefulness of this study as put option strike price choices may di↵er from those
calculated. Actual transaction costs are also unknown, but assumed to be $0.05/cwt.



3 Methods

3.1 Selection of Model (CME Product Used for Put Option)

In order to decide which of the four CME products Gerard and John should buy put options on, the
product with the strongest linear relationship with the mailbox price needs to be found. After which
a reliable OLS model can be built. To do this, we regressed the prices of the four di↵erent milk
products (as dependent variables) on the mailbox prices that Gerard recorded. The accuracy of
each model was determined through a series of statistical tests and evaluations. These evaluations
assessed the underlying assumptions required to properly apply simple linear regression models to
the data at hand. These tests helped to identify the strengths and weaknesses of each model. A
summary of the tests and assumptions and their corresponding interpretations are listed below.

Assumption Explanation Test & Interpretation

Linear relationship Test for strength of linear High R2; high correlation; low
relationship between exchange and t-test p-value; high F-test p-values;

mailbox price. low SSE; plot X & Y values
Exogeneity The expected error for given level Residuals plotted against

of mailbox price is zero. independent variable values.
Homoskedasticity The error term variance is the Plot residuals against predictor

same for di↵erent mailbox prices. variables, Breusch-Pagan test and
Non-Constant Variance test.

No serial/ Any observation of exchange price Visual check and Durbin-Watson
auto correlation is independent of any other test (for a first order auto-

observation of exchange price for regressive error model).
a given level of mailbox price.

No endogeneity Correlation between error terms Plot residuals against potentially
and level of independent variables omitted variables that may also

(in model or not) is zero. a↵ect exchange prices.
Normal, independent Necessary for predictions and Independence: Sequence plots and

and identically tests. Error term values don’t Residual plots. Normality:
distributed error a↵ect each other. Error terms Histogram of residuals, qqplot of

terms have same distribution of N(0,�2) residuals and Shapiro-Wilk
test for normality.

If a linear relationship between the mailbox price and exchange price is evident, but not all of the
other assumptions are fulfilled, transformations of X or Y variables may be necessary. In particular,
the normality of error terms assumption is required to make any predictions and thereby provide
any recommendation to Gerard and John.

3.2 Selection of Put Option Strike Price

Given a strong enough linear relationship between the mailbox price and one of the exchange prices
(that fits all of the assumptions specified in the Selection of Model Section), an ideal strike price



can be predicted within confidence bounds.

Plugging a desired mailbox floor price into the model will give an exchange product strike price
that on average will approximate the desired mailbox floor price. In order to choose a strike price
that meets or exceeds an approximation of the desired mailbox floor price with 95% confidence,
the upper bound for the prediction interval can be used. The formula for that is below:

Confidence Interval for prediction: Ŷ
h

± t(1�↵/2;n�2) ⇤ s{pred}

where s2{pred} = MSE ⇤ [1 + 1
n

+ (Xh�X̄)2P
(Xi�X̄)2

] = MSE + s2{Ŷ
h

}

The initial strategy is to determine a strike price in this way without taking into consideration
premium and transaction costs. After accomplishing this, premium and transaction costs will be
factored in.

4 Results

4.1 Selection of Model (CME Product Used for Put Option)

Initially, four simple linear models were created for each response variable. These first models
were Class.III ⇠ Mailbox Price, Class.IV ⇠ Mailbox Price, Butter ⇠ Mailbox Price, and NFDM ⇠
Mailbox Price where, again, NFDM stands for non-fat dry milk. These first models produced the
following linear models and results (see Table 1).

Model Equation (�0) (�1) R2 SSE F-test
p-value p-value

Class.III Y = �1.56 + 1.18x 0.033 <2e-16 0.927 13.986 494
Class.IV Y = 2.69 + 0.76x 0.0123 4.24e-12 0.712 29.586 96.48
Butter Y = �0.01 + 0.12x 0.631 1.14e-09 0.618 1.176 63.04
NFDM Y = 0.73 + 0.023x 0.015 0.282 0.030 2.280 1.19

Table 1: Summary results for each simple linear regression model.

From the results in Table 1, it is seen that the best model for predicting mailbox price so far is
Class.III milk product. It has the best R2 and F-test values as well as a low SSE value. While
the Class.IV model shows merit, it does not explain variation in X and Y quite as well as Class.III
does. Furthermore, the p-value for �1 shows more significance for Class.III than Class.IV. Butter
and NFDM do not demonstrate the desired attributes of a good linear model when compared to
Class.III and Class.IV models.

Missing from this table is the Month response variable originally included in Gerard’s data. Month
was initially left out from model development due to the cyclical nature observed in that data.
A plot of mailbox price, Class.III, Class.IV, Butter, and NFDM against time (Month) shows the
strong serial correlation between Mailbox price and Class.III and Class.IV milk prices.
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Figure 2: Time series plots of prices against month. Class.III and Class.IV follow Month closely.

Due to the serial correlation observed between Month and Class.III and Class.IV milk prices,
linear models involving Month were not included during model development. While there are some
interesting patterns observed in this plot, an in-depth time-series analysis is beyond the scope of
this case study. However, there are some interesting observations from this relationship included
in the Appendix (see Figure 10).

Now that Month has been ruled out for now, the next step is to evaluate each of the models listed
in Table 1 and determine which of them, if any, violate the assumptions detailed in the Methods
section.

First, testing for a linear relationship. Of the four models, only Class.III and Class.IV models
have results that fully support the first assumption - that there exists some linear relationship
between Mailbox price and the respective categorical milk prices. This is determined by the p-values
associated with �1 for each model. Interpreting p-values for �1 come from the null hypotheses H0:
�1 = 0 and the alternative hypotheses H

a

: �1 6= 0. Since Class.III and Class.IV milk models have
the most significant �1 values (which allow us to reject H0 at ↵ = 0.05) and large R2 values, among
other results, we feel that it is appropriate to exclude the Butter and NFDM models at this point.
While the following tests and evaluations were performed for all models, only the results of Class.III
and Class.IV will be discussed further in this section.

Testing for the second assumption - exogeneity - is best done through visual inspection where only
the residuals are plotted against its index within the data-set. Here, we are looking for an equal
distribution of residuals above and below 0 for each model. Figure 3 shows the residuals for Class.III
on the left and Class.IV on the right.
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Figure 3: Residual plots for Class.III and Class.IV milk models.

Both sets of residuals appear to be somewhat equally distributed around the zero line. For all
intents and purposes, these two models demonstrate decent exogeneity. (Class.III looks better
than Class.IV). The forthcoming tests will help rule out the pattern observed in the residual plots.

Testing the third assumption, homoskedasticity, is when the the models really begin to fail. The
results of the Bruesch-Pagan test and Non-Constant Variance (NCV) test are listed in Table 2. For
this test, the null hypotheses is:

H0 : �1 = 0
H

a

: �1 6= 0
where a significant �1 indicates growth/decay with the independent variable according to the sign
of the test result. The NCV test has the same hypothesis. Both Breusch-Pagan (BP) and NCV
tests were conducted on all models with a significance level of ↵ = 0.05.

Model Equation Breusch-Pagan NCV Test Conclusion
p-value p-value

Class.III Y = �1.56 + 1.18x 0.0099 0.0026 Residuals are heteroskedastic
Class.IV Y = 2.69 + 0.76x 0.0036 4.27e-08 Residuals are heteroskedastic

Table 2: Summary results of BP-test and NCV-test for Class.III and Class.IV models.

According to both BP and NCV tests, the residuals of both models are heteroskedastic at the ↵
= 0.05 significance level. Figure 4 shows the heteroskedasticity, or growth of the residuals, when
plotted against the independent variable, Mailbox Price. Class.IV shows stronger heteroskedasticity
than Class.III.

Since both models fail the test for homoskedasticity, it is at this point that transformations to the
data were considered. Since the Class.III model is the leading model to this point, only transfor-
mations to Class.III are discussed here.
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Figure 4: Residuals plot for Class.III and Class.IV milk models.
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Figure 5

One powerful tool for identifying appro-
priate data transformations on the depen-
dent variable is the Box-Cox Power Trans-
formation procedure. This procedure calcu-
lates an optimal value by which to trans-
form Y into Y �. This is done by re-
cursively applying di↵erent values of � to
Y , and maximizing likelihood. As can
be seen in Figure 5, the Box-Cox power
transformation for the Class.III model rec-
ommends a � = -0.5. Note, that � =
0 falls within the 95% interval for recom-
mended values of �. This led to the
exploration of two particular transforma-
tions of the dependent variable: 1p

Y

and

log(Y ).

At this point, there are two new models in consideration to optimally predict milk price given a
Mailbox price: a loq(Y ) model and a 1p

Y

model. Each model went through the same inspection

detailed previously. Each model has its strength and weaknesses. Table 3 provides the summary
results for the new models at hand. The original model for Class.III is included in this table for
comparison.



Model Equation (�0) (�1) R2 SSE F-test
p-value p-value

Class.III Y = �1.56 + 1.18x 0.033 <2e-16 0.927 13.986 494
log(Class.III) log(Y ) = 1.55 + 0.082x <2e-16 <2e-16 0.9462 0.04848 685.6

1p
Class.III

1p
Y

= 0.413� 0.011x <2e-16 <2e-16 0.967 0.00084 696.7

Table 3: Summary results of Class.III linear model and transformation models.

Clearly the two transformed models are better than the original linear model. The two new models
both have a considerably higher F-test result and extremely low SSE values. Based on these results,
the 1p

Y

model seems to be the best model so far. Residual plots of the two new models also show

that 1p
Y

is a better model (see Figure 6). These residual plots show better exogeneity than the

residual plots in Figure 3.
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Figure 6: Residuals plot for loq(Y ) model and a 1p
Y

model, where Y is Class.III milk price.

These two models also pass the Breusch-Pagan test and Non-Constant Variance test for ho-
moskedasticity (see Table 4). They each have p-values > ↵, for ↵ = 0.05, which means we fail to
reject the null hypothesis that the residuals are homoskedastic. In addition to the quantitative test,
plots of the residuals against the independent variable visually appear to be constant (see Figure
7).

Model Breusch-Pagan NCV Test Conclustion
p-value p-value

log(Y ) 0.4203 0.4457 Residuals are homoskedastic
1

sqrtY

0.75 0.7675 Residuals are homoskedastic

Table 4: Summary results of BP-test and NCV-test for log(Y ) and 1p
Y

models.

The two residual plots in Figure 7 show excellent spread about the line Y=0 and do not exhibit any
growth or decay as Mailbox Price increases. Now that we have two models that are homoskedastic,
(and pass all of the previous tests/assumptions) we can evaluate the last assumption before finally
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Figure 7: Residual plots for log(Y ) and 1p
Y

models.

choosing a model and making predictions.

The last assumption to test is whether or not the residuals are normally distributed. The Shapiro-
Wilk test provides a quantitative result, whereas a histogram of the residuals and a quantile-quantile
plot (qq-plot) provide a qualitative, visual check for normally distributed residuals. The Shapiro-
Wilk test is:

H0: normally distributed residuals
H

a

: non-normally distributed residuals

where a p-value < ↵ from this test means that the null hypothesis can be rejected with ↵ being
set to 0.05. Table 5 shows the results of the Shapiro-Wilk test, indicating that both models’
residuals are normally distributed. In other words, with p-values > ↵, we fail to reject the null
hypothesis. Figure 8 provides an additional visual confirmation that each model has normally
distributed residuals.

Model Shapiro-Wilk Conclusion
p-value

log(Y ) 0.2298 Residuals are normally distributed
1

sqrtY

0.3101 Residuals are normally distributed

Table 5: Summary results of BP-test and NCV-test for log(Y ) and 1p
Y

models.
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Figure 8: Plots indicating normal distribution of residuals for log(Y ) model and 1p
Y

model.

Now that we have two distinct models that correlate best with Gerard’s Mailbox price and passes
all the tests and assumptions necessary to apply linear regression models, which of the two models
is the best? From a numerical perspective, the 1p

Y

model provides the best fit. It has a higher

R2 value, the largest F-test value, and the lowest SSE value. But the 1p
Y

fitted equation su↵ers

in interpretability when compared to the log(Y ) model. In addition, even though the R2 term is
higher for the 1p

Y

model, it is only 2% higher than the R2 value for the log(Y ) model. Algebraically

reformatting the two models at hand results in the following two equations:

log(Y ) = 1.55 + 0.082 ⇤X ! Y = exp(1.55 + 0.082 ⇤X)
and

1p
Y

= 0.413� 0.011 ⇤X ! Y = 1
(0.413�0.11⇤X)2

Considering the two algebraically reformed equations, the log(Y ) model is much easier to interpret:
On average, an increase in X will result in an 8.2% increase in Y. The algebraically reformed equation
for the log(Y ) model is a classic growth/decay exponential model. Conversely, interpretability is
much more complicated for the 1p

Y

model: On average, an increase in X results in the inverse

square decrease of 0.11Y, or something to that e↵ect. This is much more di�cult to interpret.



Even though the 1p
Y

model explains away error slightly better than the log(Y ) model, we feel that

the increase in complexity is not worth the extra 2% gained in explained variation (R2
log

= 0.946 vs.

R2
root

= 0.967). As such, the final model that will best help Gerard determine which milk options
to purchase is the log(Y ) model.

4.2 Selection of Put Option Strike Price

Comparisons of fitted strike prices given a desired mailbox floor price of $12.50 (ignoring premium
and transaction costs) in 6 months are shown in Table 6. Gerard and John selected the desired
mailbox floor price based on production costs, so production costs don’t need to be factored into
the model.

Milk Category Fitted Strike Price
Class.III (Linear Model) $13.22
Class.III (Log Model) $13.11

Class.III (Inv. Root Model) $13.07
Class.IV $12.20
Butter $1.43
NFDM $1.02

Table 6: Fitted Model Strike Price of dairy products given a Mailbox Price Floor of $12.50.

See the appendix for graphs of how well these predictions fit in the with the data (Figure 14).

The three Class.III models have similar estimated strike prices. Class.IV, Butter and NFDM are
included in the table for illustrations sake. Class.III models were previously determined to be
superior, so only those will be looked at for the rest of the analysis.

The fitted strike price is the strike price that on average will replicate the $12.50 mailbox floor price
that John and Gerard want. In order to have a strike price that at a minimum replicates $12.50
mailbox floor price with a certain degree of confidence, John and Gerard would be better served
with the upper bound of the 95% prediction confidence interval of the fitted strike price. The table
compares the MSEs, fitted strike prices and upper bounds for each of the three strike prices.

Model Fitted Strike Price Upper Prediction Bound
Class.III (Linear Model) $13.22 $14.24
Class.III (Log Model) $13.11 $13.93

Class.III (Inv. Root Model) $13.07 $13.86

Table 7: Comparison of Upper Prediction Bounds for Fitted Strike Price given a Mailbox Price
Floor of $12.50.

The upper prediction bounds of the fitted strike price for the log model and inverse root model are
very close. The five actual available put option strike price choices are unknown (since the futures
price is unknown). Ignoring premiums and transaction costs, the strike price closest to the upper



bound of the Class.III fitted log model, $13.93, is Gerard and John’s best bet of establishing a floor
of $12.50 for mailbox price with high confidence. Reasons for choosing the log model are discussed
in the prior section.

With a strike price of $13.93 for a put option on Class.III, the profit at six months for Gerard and
John (ignoring premium and transaction costs) =
[$13.93� Class.III +Mailbox� $12] if Class.III < $13.93
[Mailbox� $12] if Class.III � $13.93.

Below are graphs of the profit with Class.III using the fitted log model, upper prediction bound
and lower prediction bound.
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Figure 9: Gerald and John’s profit is graphed given a put option on Class.III. Uses a log-transformed
linear model with 95% prediction confidence bounds. Premium and transaction costs are not
included.

The shape of the left sides of the graphs are curved due to the log-transformed linear model relating
Class.III to Mailbox price. The right sides of the three graphed profits are straight lines and merge
since they represent the same graph of Mailbox price less production costs. The right sides aren’t
curved since they aren’t dependent on the relationship between Class.III and Mailbox price. This
is a biased graph since it doesn’t include put options, premium, and transaction costs. Without
those, it looks like profits will always be positive. The graph below gives a more accurate picture:
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Figure 10: Gerald and John’s profit is graphed given a put option on Class.III and compared to
their unhedged profit. Uses a log-transformed linear model with 95% prediction confidence bounds.
Premium and transaction costs are included.

Since premiums aren’t known, this graph assumes a conservative put option premium estimate of
$.60/cwt (ignoring discounting) and transaction costs of $0.05/cwt. As a result the hedged profit
is floored below zero in scenarios where the mailbox price is low enough. This is contrasted with
the profit/loss graph if the farmers don’t hedge; the downside potential is very large. In order to
pay for the downside potential floor, the farmers receive less profit for higher mailbox prices if they
hedge.

Depending on what the actual put option, premium, and transaction costs are, the strike price can
easily be recalculated. One way of doing this is to calculate the strike price and resulting profit
for di↵erent mailbox price floors (besides $12.50) and subtract premium and transaction costs.
Depending on put option strike price availability and the actual premiums (which go up as strike
price increases), there may be a strike price that better fits the farmer’s wishes with a certain degree
of confidence. This analysis will only be possible if premiums and strike prices are known.



5 Conclusion and Recommendations

Considering each of the models examined, the model where log(Class.III) is regressed on Mailbox
price provides the best model by which to predict an exchange product’s prices using Gerard’s Milk
prices. From this model, we are able to provide a confident recommendation to Gerard for which
milk put option and at which strike price to buy. The result is that Gerard’s losses are minimized,
and his potential profits are only decreased by the put option premium and transaction costs. His
recommended put option strike price is whichever available strike price is nearest $13.93. There is
evidence of auto correlation among residuals due to the time series nature of the data. As a result
the calculated strike price is likely somewhat biased downwards from what it should be. This is
because time series auto correlated data results in an underestimated Mean Square Error value.

The data pretty clearly supported buying the put option on Class.III. However, it may be possible
to calculate a strike price that even better fits Gerard’s objectives with more data such as the actual
put option premiums, available strike prices and transaction costs. The recommended strike price
was calculated without these data points taken into account. A future study might take these into
account.

It is also recommended that Gerard have this analysis redone in six months after finding out the
actual results. Then assumptions and the model(s) can be revised based on the results. In addition,
Gerard should continue to monitor costs which may fluctuate. If costs fluctuate too much, he may
look into buying call options to provide cost a ceiling.

6 Appendices

It is interesting to note that the average of Class.III and Class.IV milk prices plotted against Month
lines up almost perfectly with the Mailbox price. This led us to attempt to fit a model for the
average of Class.III and Class.IV regressed onto Mailbox Price. However, the initial results did not
exhibit as strong of parameters as the log(Y ) model for a linear relationship (see Figure 11 and
Table 8). As such, we did not investigate this model any further.

Model Equation (�0) (�1) R2 SSE F-test
p-value p-value

Avg(Class.III+Class.IV) Y = 0.566 + 0.97x 0.373 <2e-16 0.915 11.11 419.5

Table 8: Summary results of Class.III linear model and transformation models.
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Figure 11: Time series plots of prices against month. The average of Class.III and Class.IV correlate
almost exactly with mailbox price .

The residual plots for Butter and NFDM are included here. They show poor exogeneity. Also
plotted are the residual plots against the independent variable, Mailbox Price. These plots exhibit
heteroskedasticity.

Aside from the visual indication that Figure 12 gives us, the results of the Breusch-Pagan and
NCV tests quantitatively show that these models are heteroskedastic (see Table 9). Also included
in Table 9 are the results from the Shapiro-Wilk Test for normally distributed data. While Butter
does pass the test for normally distributed data, NFDM does not, at the ↵ = 0.05 significance level.
Figure 13 shows the skewed distribution of the NFDM residuals, adding merit to the reason why
we left it out from further analysis. Even though Butter shows a normal distribution of the errors,
it’s ability to explain variation in Mailbox price is very low (low R2, among other indicators).

Model BP-test NCV test Shapiro-Wilk Conclusion
p-value p-value p-value

Butter 0.0344 0.0148 0.8289 Residuals are normally but heteroskedastic
NFDM 0.0413 0.00158 2.16e-06 Residuals are not normally distributed

and are heteroskedastic

Table 9: Summary results of BP-test, NCV-test, and Shapiro-Wilk test for Butter and NFDM
models.
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Figure 12: Residual plots for Butter and NFDM milk models. The top row shows poor exogeneity
and the bottom row shows heteroskedasticity for both models.
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Figure 13: Plots indicating normal distribution of residuals for Butter model and skewed distribu-
tion of residuals for NFDM.



Predictions of category price given a mailbox price are displayed in Figure 14. Here we see that
a Mailbox price of $12.50 results in a predicted Class.III, Class.IV, Butter, and NFDM price of
$13.07, $12.20, $1.43, $1.02, respectively.

10 12 14 16

2.
4

2.
5

2.
6

2.
7

2.
8

2.
9

3.
0

Log(Class.III) Price vs. Mailbox Price

Mailbox Price

Lo
g(

C
la

ss
.II

I)

10 12 14 16

10
12

14
16

18

Class.IV Price vs. Mailbox Price

Mailbox Price

C
la

ss
.IV

10 12 14 16

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Butter Price vs. Mailbox Price

Mailbox Price

Bu
tte

r

10 12 14 16

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

NFDM Price vs. Mailbox Price

Mailbox Price

N
FD

M

Figure 14: Plots indicating predicted category price (indicated in red) given a Mailbox price of
$12.50.



Endogeneity is checked when residuals of individual model variables are plotted against omitted
variables. What we are looking for here is any sort of pattern in the residual data with discarded
variables. Figure 15 includes plots of these residuals. There is a strong pattern with Month as
the independent variable. This alludes to the underlying time-series relationship in the data and
resulting conclusion that it is appropriate to leave Month out of the prediction models investigated
throughout the study.
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Figure 15: Residual plots against the omitted variable, Month, indicating correlation between
Month and milk prices for each respective category.


